

Thermal desorption tube analytical method development for alpha-diketones and benzene

Dru A. Burns, Anand Ranpara, Elizabeth Fernandez, Ryan F. LeBouf

Respiratory Health Division

National Institute for Occupational Safety and Health (NIOSH)

Centers for Disease Control and Prevention

Morgantown, WV

Dru A. Burns

- Associate Service Fellow, NIOSH
- Education
 - MS in Industrial Hygiene Engineering, West Virginia University, 2016
 - BA in Chemistry, West Virginia University, 2008
- Current research focused on VOC sampling and analytical method development

Agenda

- Volatile organic compounds
- Comparison of sampling methods
- Materials and equipment
- Experimental design
- Results
- Discussion and Conclusions

Volatile Organic Compounds (VOCs)

- Vapor Pressure > 0.1 mmHg at 25°C
- Exposure can produce adverse health effects
- Ubiquitous pollutants
- Specific VOCs targeted for compliance

Suite of 20 VOCs

Acetaldehyde	Ethanol	Acetonitrile	Acetone	Isopropyl Alcohol
Methylene Chloride	2,3-Butanedione	<i>n</i> -Hexane	Chloroform	Benzene
2,3-Pentanedione	Methyl Methacrylate	Toluene	2,3-Hexanedione	Ethylbenzene
<i>m,p</i> -Xylene*	Styrene	<i>o</i> -Xylene	alpha-Pinene	<i>d</i> -Limonene

Benzene and alpha-Diketones

- Benzene
 - IARC Group 1 carcinogenic to humans
 - Leukemia, multiple myeloma, non-Hodgkin lymphoma
 - Many manufacturing industries
 - 100ppb recommended exposure limit (REL)
- alpha-Diketones
 - Obliterative bronchiolitis
 - Fibrosis and obstruction of airways
 - Flavorings and coffee manufacturing industries
 - RELs
 - 2,3-Butanedione 5ppb
 - 2,3-Pentanedione 9.3ppb

Thermal Desorption Tubes

- Advantages
 - Affinity for wide range of VOCs
 - No toxic desorption solvents
 - Reduced shipping concerns
 - Reusable
 - Small size
 - Reduced humidity effects
 - Enhanced sensitivity and detection limits
- Disadvantages
 - Unreliable sampling pumps
 - No backup section to detect breakthrough
 - Must sample with multiple tubes in series

Materials and equipment

- Markes[®] Universal inert-coated thermal desorption (TD) tubes
 - Markes International, Inc.
 - Fused-silica inert-coated multibed sorbent tubes
 - Tenax TA
 - Carbograph 1TD
 - Carboxen 1003
- ISO 17025 certified gas standard
 - Linde[®] PLC
- Markes[®] Calibration Solution Loading Rig (CSLR)
- Markes[®] UNITY–ULTRA-xr[™]
- Agilent[®] 5977B gas chromatograph and 7890B mass spectrometer (GC-MS)

Experimental Design

- Sample sets:
 - Calibration curve dynamic range assessment
 - n=10
 - Limits of detection and quantification (LOD/LOQ)
 - n=6
 - Recovery assessment
 - Four loading levels ranging from 0.1*REL (~0.5ppb) to 2.0*REL (~10ppb)
 - n=6 per loading level
 - Storage stability
 - One loading level equivalent to 0.5*REL or ~2.5ppb
 - n=30

Method Development and Evaluation

- NIOSH criterion
 - +/- 25% error
 - Bias and precision
 - 95% confidence interval on accuracy
- Storage stability assessment
 - Relative percent difference
 - Refrigerated storage
 - 4°C

Calibration Curve Dynamic Range

- Curves for most compounds linear across two orders of magnitude
 - 0.1 to >100ng
- R² coefficient of linearity
 - Mean = 0.996
 - Maximum = 0.999
 - Minimum = 0.958

Limits of Detection and Quantification

Compound	LOD (ng , ppb)	LOQ (ng , ppb)
2,3-Butanedione	0.46 , 0.13	1.53 , 0.43
2,3-Hexanedione	1.96 , 0.42	6.53 , 1.40
2,3-Pentanedione	0.22 , 0.05	0.73 , 0.18
Benzene	0.27 , 0.08	0.89 , 0.28

- Other compounds
 - LODs range from 0.19 to 6.47 ng (0.05 ppb to 3.59 ppb)
 - LOQs range from 0.64 to 21.55 ng (0.14 ppb to 10.78 ppb)

Upper and Lower 95% Confidence Intervals (UCL & LCL) on Point Estimates of Analytical Method Accuracy

Storage stability

- Percent difference detected mass from Day 0
 - +/-10% change
- Refrigerated storage
 - 4°C
- Day 7 data questionable
- Many compounds stable beyond 14 days
 - Some stable at 30 days

Compound	Day 7	Day 10	Day 14	Day 21	Day 30
2,3-Butanedione	18.0	6.3	5.1	<mark>19.7</mark>	25.0
2,3-Hexanedione	6.1	<mark>9.8</mark>	9.9	1.4	5.5
2,3-Pentanedione	4.5	0.5	1.6	<mark>24.8</mark>	<mark>17.6</mark>
Acetonitrile	4.8	22.6	28.6	12.3	11.8
alpha-Pinene	11.6	3.7	5.6	0.1	5.3
<mark>Benzene</mark>	15.5	3.0	2.0	4.4	4.9
Chloroform	1.2	7.8	1.9	3.1	4.3
d-Limonene	4.6	4.3	0.5	3.7	2.4
Ethylbenzene	7.2	6.4	5.1	2.4	1.6
Isopropyl Alcohol	12.3	49.6	46.9	20.6	10.5
m,p-Xylene	8.3	7.0	4.8	1.4	2.0
Methyl Methacrylate	11.8	15.3	15.3	6.5	7.6
Methylene Chloride	6.8	9.4	8.4	2.9	1.1
n-Hexane	5.3	5.1	3.0	0.1	0.1
o-Xylene	8.4	7.8	6.2	3.1	3.3
Styrene	6.6	6.9	4.7	1.1	1.7
Toluene	11.4	11.0	12.5	6.6	10.4

Discussion and Conclusions

- Analytical method passes NIOSH accuracy criterion for 12 compounds including two of the alpha-diketones and benzene
 - 2,3-pentanedione and 2,3-hexanedione pass
 - 2,3-butanedione result is inconclusive
 - Repeat assessment
- Day 7 sample storage stability data appears to disagree with Days 0, 10, 14, 21, and 30 data
 - Repeat assessment at refrigerated and ambient storage conditions
- Analytical method evaluation only
 - Full evaluation of NIOSH accuracy criterion applied to sampling AND analytical error

Takeaway

- NIOSH RHD/FSB are working on TD tube sampling and analytical method development for alpha-diketones, benzene, and a selection of other VOCs
 - Current method not yet ready for field sampling use
 - Other groups within NIOSH are working on a passive TD tube method for alpha-diketones

Acknowledgements

- Sample preparation
 - Michael Aldridge
 - CDC/NIOSH/RHD/FSB
 - K. Chandler Williams
 - CDC/NIOSH/RHD/FSB
- Statistical analysis consultation
 - Dr. Gerald Hobbs
 - West Virginia University

Thank you Dru A. Burns iot8@cdc.gov

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Selected References

- Bartley, D. and Linden, G. (2008). Measurement Uncertainty. Ann. Occup. Hyg., Vol. 52, No. 6, pp. 413–417, 2008.
- IARC. (2018). Benzene. IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS, (Volume 120).
- Kennedy, E. R., Fischbach, T. J., Song, R., Eller, P. M., & Shulman, S. A. (1995).
 Guidelines for Air Sampling and Analytical Method Development and Evaluation, 95-117.
- NIOSH. (2012). Components for Evaluation of Direct-Reading Monitors for Gases and Vapors. (2012-162).
- NIOSH. (2016). Criteria for a recommended standard: occupational exposure to diacetyl and 2,3-pentanedione. (2016-111). Retrieved from <u>https://www.cdc.gov/niosh/docs/2016-111/pdfs/2016-111-</u> all.pdf?id=10.26616/NIOSHPUB2016111

Selected References

- Images:
 - <u>Sorbent Tubes</u> | Markes International
 - <u>Calibration solution loading rig (CSLR) | Markes International</u>
 - <u>Sorbent Tube Sampling With UNITY–ULTRA-xr | Markes International</u>

